Abstract:High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
Abstract:Class-Incremental Learning (CIL) requires models to continuously acquire new classes without forgetting previously learned ones. A dominant paradigm involves freezing a pre-trained model and training lightweight, task-specific adapters. However, maintaining task-specific parameters hinders knowledge transfer and incurs high retrieval costs, while naive parameter fusion often leads to destructive interference and catastrophic forgetting. To address these challenges, we propose Dynamical Adapter Fusion (DAF) to construct a single robust global adapter. Grounded in the PAC-Bayes theorem, we derive a fusion mechanism that explicitly integrates three components: the optimized task-specific adapter parameters, the previous global adapter parameters, and the initialization parameters. We utilize the Taylor expansion of the loss function to derive the optimal fusion coefficients, dynamically achieving the best balance between stability and plasticity. Furthermore, we propose a Robust Initialization strategy to effectively capture global knowledge patterns. Experiments on multiple CIL benchmarks demonstrate that DAF achieves state-of-the-art (SOTA) performance.
Abstract:Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
Abstract:The rapid progress of generative models has intensified the need for reliable and robust detection under real-world conditions. However, existing detectors often overfit to generator-specific artifacts and remain highly sensitive to real-world degradations. As generative architectures evolve and images undergo multi-round cross-platform sharing and post-processing (chain degradations), these artifact cues become obsolete and harder to detect. To address this, we propose Real-centric Envelope Modeling (REM), a new paradigm that shifts detection from learning generator artifacts to modeling the robust distribution of real images. REM introduces feature-level perturbations in self-reconstruction to generate near-real samples, and employs an envelope estimator with cross-domain consistency to learn a boundary enclosing the real image manifold. We further build RealChain, a comprehensive benchmark covering both open-source and commercial generators with simulated real-world degradation. Across eight benchmark evaluations, REM achieves an average improvement of 7.5% over state-of-the-art methods, and notably maintains exceptional generalization on the severely degraded RealChain benchmark, establishing a solid foundation for synthetic image detection under real-world conditions. The code and the RealChain benchmark will be made publicly available upon acceptance of the paper.
Abstract:With growing concerns over image authenticity and digital safety, the field of AI-generated image (AIGI) detection has progressed rapidly. Yet, most AIGI detectors still struggle under real-world degradations, particularly motion blur, which frequently occurs in handheld photography, fast motion, and compressed video. Such blur distorts fine textures and suppresses high-frequency artifacts, causing severe performance drops in real-world settings. We address this limitation with a blur-robust AIGI detection framework based on teacher-student knowledge distillation. A high-capacity teacher (DINOv3), trained on clean (i.e., sharp) images, provides stable and semantically rich representations that serve as a reference for learning. By freezing the teacher to maintain its generalization ability, we distill its feature and logit responses from sharp images to a student trained on blurred counterparts, enabling the student to produce consistent representations under motion degradation. Extensive experiments benchmarks show that our method achieves state-of-the-art performance under both motion-blurred and clean conditions, demonstrating improved generalization and real-world applicability. Source codes will be released at: https://github.com/JiaLiangShen/Dino-Detect-for-blur-robust-AIGC-Detection.
Abstract:Recent studies have demonstrated that incorporating trainable prompts into pretrained models enables effective incremental learning. However, the application of prompts in incremental object detection (IOD) remains underexplored. Existing prompts pool based approaches assume disjoint class sets across incremental tasks, which are unsuitable for IOD as they overlook the inherent co-occurrence phenomenon in detection images. In co-occurring scenarios, unlabeled objects from previous tasks may appear in current task images, leading to confusion in prompts pool. In this paper, we hold that prompt structures should exhibit adaptive consolidation properties across tasks, with constrained updates to prevent catastrophic forgetting. Motivated by this, we introduce Parameterized Prompts for Incremental Object Detection (P$^2$IOD). Leveraging neural networks global evolution properties, P$^2$IOD employs networks as the parameterized prompts to adaptively consolidate knowledge across tasks. To constrain prompts structure updates, P$^2$IOD further engages a parameterized prompts fusion strategy. Extensive experiments on PASCAL VOC2007 and MS COCO datasets demonstrate that P$^2$IOD's effectiveness in IOD and achieves the state-of-the-art performance among existing baselines.
Abstract:To meet the demands of applications like robotics and autonomous driving that require real-time responses to dynamic environments, efficient continual learning methods suitable for edge devices have attracted increasing attention. In this transition, using frozen pretrained models with prompts has become a mainstream strategy to combat catastrophic forgetting. However, this approach introduces a new critical bottleneck: plasticity loss, where the model's ability to learn new knowledge diminishes due to the frozen backbone and the limited capacity of prompt parameters. We argue that the reduction in plasticity stems from a lack of update vitality in underutilized parameters during the training process. To this end, we propose the Continual Backpropagation Prompt Network (CBPNet), an effective and parameter efficient framework designed to restore the model's learning vitality. We innovatively integrate an Efficient CBP Block that counteracts plasticity decay by adaptively reinitializing these underutilized parameters. Experimental results on edge devices demonstrate CBPNet's effectiveness across multiple benchmarks. On Split CIFAR-100, it improves average accuracy by over 1% against a strong baseline, and on the more challenging Split ImageNet-R, it achieves a state of the art accuracy of 69.41%. This is accomplished by training additional parameters that constitute less than 0.2% of the backbone's size, validating our approach.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) systems, operating in the near-field region due to their massive antenna arrays, are a key enabler of next-generation wireless communications but face significant challenges in channel state information (CSI) feedback. Deep learning has emerged as a powerful tool by learning compact CSI representations for feedback. However, existing methods struggle to capture the intricate structure of near-field CSI while incurring prohibitive computational overhead on practical mobile devices. To overcome these limitations, we propose the Near-Field Efficient Feedback Transformer (NEFT) family for accurate and efficient near-field CSI feedback across diverse hardware platforms. Built on a hierarchical Vision Transformer backbone, NEFT is extended with lightweight variants to meet various deployment constraints: NEFT-Compact applies multi-level knowledge distillation (KD) to reduce complexity while maintaining accuracy, and NEFT-Hybrid and NEFT-Edge address encoder- and edge-constrained scenarios via attention-free encoding and KD. Extensive simulations show that NEFT achieves a 15--21 dB improvement in normalized mean-squared error (NMSE) over state-of-the-art methods, while NEFT-Compact and NEFT-Edge reduce total FLOPs by 25--36% with negligible accuracy loss. Moreover, NEFT-Hybrid lowers encoder-side complexity by up to 64%, enabling deployment in highly asymmetric device scenarios. These results establish NEFT as a practical and scalable solution for near-field CSI feedback in XL-MIMO systems.




Abstract:As the demand for ubiquitous connectivity and high-precision environmental awareness grows, integrated sensing and communication (ISAC) has emerged as a key technology for sixth-generation (6G) wireless networks. Intelligent metasurfaces (IMs) have also been widely adopted in ISAC scenarios due to their efficient, programmable control over electromagnetic waves. This provides a versatile solution that meets the dual-function requirements of next-generation networks. Although reconfigurable intelligent surfaces (RISs) have been extensively studied for manipulating the propagation channel between base and mobile stations, the full potential of IMs in ISAC transceiver design remains under-explored. Against this backdrop, this article explores emerging IM-enabled transceiver designs for ISAC systems. It begins with an overview of representative IM architectures, their unique principles, and their inherent advantages in EM wave manipulation. Next, a unified ISAC framework is established to systematically model the design and derivation of diverse IM-enabled transceiver structures. This lays the foundation for performance optimization, trade-offs, and analysis. The paper then discusses several critical technologies for IM-enabled ISAC transceivers, including dedicated channel modeling, effective channel estimation, tailored beamforming strategies, and dual-functional waveform design.




Abstract:In this paper, we introduce OmniStyle-1M, a large-scale paired style transfer dataset comprising over one million content-style-stylized image triplets across 1,000 diverse style categories, each enhanced with textual descriptions and instruction prompts. We show that OmniStyle-1M can not only enable efficient and scalable of style transfer models through supervised training but also facilitate precise control over target stylization. Especially, to ensure the quality of the dataset, we introduce OmniFilter, a comprehensive style transfer quality assessment framework, which filters high-quality triplets based on content preservation, style consistency, and aesthetic appeal. Building upon this foundation, we propose OmniStyle, a framework based on the Diffusion Transformer (DiT) architecture designed for high-quality and efficient style transfer. This framework supports both instruction-guided and image-guided style transfer, generating high resolution outputs with exceptional detail. Extensive qualitative and quantitative evaluations demonstrate OmniStyle's superior performance compared to existing approaches, highlighting its efficiency and versatility. OmniStyle-1M and its accompanying methodologies provide a significant contribution to advancing high-quality style transfer, offering a valuable resource for the research community.